Multilinear Maps from Obfuscation

نویسندگان

  • Martin R. Albrecht
  • Pooya Farshim
  • Dennis Hofheinz
  • Enrique Larraia
  • Kenneth G. Paterson
چکیده

We provide constructions of multilinear groups equipped with natural hard problems from indistinguishability obfuscation, homomorphic encryption, and NIZKs. This complements known results on the constructions of indistinguishability obfuscators from multilinear maps in the reverse direction. We provide two distinct, but closely related constructions and show that multilinear analogues of the DDH assumption hold for them. Our first construction is symmetric and comes with a κ-linear map e : G −→ GT for prime-order groups G and GT . To establish the hardness of the κ-linear DDH problem, we rely on the existence of a base group for which the (κ − 1)-strong DDH assumption holds. Our second construction is for the asymmetric setting, where e : G1 × · · · × Gκ −→ GT for a collection of κ+ 1 prime-order groups Gi and GT , and relies only on the standard DDH assumption in its base group. In both constructions the linearity κ can be set to any arbitrary but a priori fixed polynomial value in the security parameter. We rely on a number of powerful tools in our constructions: (probabilistic) indistinguishability obfuscation, dual-mode NIZK proof systems (with perfect soundness, witness indistinguishability and zero knowledge), and additively homomorphic encryption for the group Z+N. At a high level, we enable “bootstrapping” multilinear assumptions from their simpler counterparts in standard cryptographic groups, and show the equivalence of IO and multilinear maps under the existence of the aforementioned primitives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How to Obfuscate Programs Directly

We propose a new way to obfuscate programs, using composite-order multilinear maps. Our construction operates directly on straight-line programs (arithmetic circuits), rather than converting them to matrix branching programs as in other known approaches. This yields considerable efficiency improvements. For an NC circuit of size s and depth d, with n inputs, we require only O(ds + n) multilinea...

متن کامل

Obfuscation without the Vulnerabilities of Multilinear Maps

Indistinguishability obfuscation is a central primitive in cryptography. Security of existing multilinear maps constructions on which current obfuscation candidates are based is poorly understood. In a few words, multilinear maps allow for checking if an arbitrary bounded degree polynomial on hidden values evaluates to zero or not. All known attacks on multilinear maps depend on the information...

متن کامل

Obfuscation from Low Noise Multilinear Maps

Multilinear maps enable homomorphic computation on encoded values and a public procedure to check if the computation on the encoded values results in a zero. Encodings in known candidate constructions of multilinear maps have a noise component, which is crucial for security. However, this noise grows (gets accumulated) with homomorphic computations and must remain below the maximal noise suppor...

متن کامل

A Primer on Cryptographic Multilinear Maps and Code Obfuscation

The construction of cryptographic multilinear maps and a general-purpose code obfuscator were two long-standing open problems in cryptography. It has been clear for a number of years that constructions of these two primitives would yield many interesting applications. This thesis describes the Coron-Lepoint-Tibouchi candidate construction for multilinear maps, as well as new candidates for code...

متن کامل

Ideal Multilinear Maps based on Ideal Lattices

Cryptographic multilinear maps have many applications, such as multipartite key exchange and software obfuscation. However, the encodings of three current constructions are “noisy” and their multilinearity levels are fixed and bounded in advance. In this paper, we describe a candidate construction of ideal multilinear maps by using ideal lattices, which supports arbitrary multilinearity levels....

متن کامل

Ideal Multilinear Maps Based on Ideal Lattices

Cryptographic multilinear maps have many applications, such as multipartite key exchange and software obfuscation. However, the encodings of three current constructions are “noisy” and their multilinearity levels are fixed and bounded in advance. In this paper, we describe a candidate construction of ideal multilinear maps by using ideal lattices, which supports arbitrary multilinearity levels....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015